
A Component-Based Framework for the
Development of Virtual Musical Instruments

Based on Physical Modeling
Panagiotis Tzevelekos, Thanassis Perperis, Varvara Kyritsi and Georgios Kouroupetroglou

National Kapodistrian University of Athens, Department of Informatics and Telecommunications, Athens, Greece,
{taktzev, a.perperis, koupe}@di.uoa.gr

Abstract — We propose a framework for the design and
development of component-based woodwind virtual
instruments. Each functional part of the instrument is
represented with an independent component, and can be
created with different approaches, by unfamiliar
constructors. Using the aforementioned framework,
Virtual Zournas is implemented. The user can
experiment with the instrument, changing its physical
properties. Instrument control is performed via MIDI
files or external MIDI devices.

I.

II.

INTRODUCTION

Music performers are always in search for greater
possibilities in terms of artistic creation and expression.
Such needs led to the development of Virtual Musical
Instruments (VMIs). Even though they were initially
designed for live performances, VMIs can find use in a
plethora of applications, spreading from educational
programs to virtual museums [1], [2], [3].

Until today, there have been few strictly predefined and
autonomous frameworks for developing VMIs [4], [5].
Researchers study VMIs from different points of view,
focusing either on the sound synthesis procedure [6], [7],
or on innovative means of gestural control and interaction
interfaces [8], [9], [10]. Educational and “museum”
applications center mainly on the photorealistic 3-
dimensional visual representation of the instrument [2],
[11]. Moreover, such systems do not permit the use of
different methodologies for sound synthesis and
visualization, and they don’t predict for a life cycle with
independent designers and users, able to alter an existing
VMI or build one from scratch.

In this paper, we present a framework for the design
and implementation of VMIs based on software
components, which allows the collaboration among
different developers with different approaches. We begin
by analyzing sound synthesis by physical modeling and
some reasons why we find it to be the most appropriate
technique to use with VMIs. After showing how every
musical instrument is composed of different functional
parts (i.e. excitation, oscillating body, resonance body),
which play their own roles in the sound production
procedure, we proceed with the description of the
framework. Each functional part of the instrument is
represented with an independent component. Such
components are linked together in order for the complete
VMI to be constructed. Based on the proposed framework,

Virtual Zournas is implemented. The appropriate
components and a full use-case scenario are presented.

PHYSICAL MODELING

Physical models are based on mathematical models that
can describe the physical acoustics of a real-world
instrument. By describing its acoustical behavior with
equations, we understand it better and we can simulate it
better. As C. Roads states [12]: “a physical model
embodies the Newtonian ideal of a precise mathematical
model of a complicated mechano-acoustical process”.
That is, if it is likely to collect all the equations
corresponding to sound generation and propagation and
render them by computing means, then the sound output
would have great resemblance with the one of the real
instrument.

It should be made clear however, that the main purpose
of building physical models of musical instruments is not
to simply replicate them. VMIs based on physical
modeling provide the user with the ability to control them
in a straightforward manner during the sound generation
process, as well as during a live performance.

Physical models are often described as musical “reality
generators”, since they can develop forms that have
nothing to do with reality. Thus, the real world can serve
merely to inspire the creation of surreal sounds and
instruments [12], [13].

The sound production process is quite similar in all
acoustic instruments. An excitation sets an instrument
part, the oscillating body, in periodic motion. The
oscillation sets in motion other parts of the instrument,
mostly described by the term “resonance body”. Finally,
the secondary oscillations produce acoustic waves that
travel through air and reach our ears.

While analyzing the acoustic behavior of a musical
instrument, attention should be given to all of its parts,
even to those whose role in sound production is thought to
be less profound or evident. Slides and valves in brass
instruments, keys and tone-holes in woodwinds, the bridge
in strings, are such examples.

It is hence obvious, that a musical instrument can be
considered to have different functional parts, each one
having a different task in the sound production process. In
this way, in order to design a physical model, it is a
common procedure to focus on each of these parts
separately. One must derive the equations that describe the
acoustics of each part, build individual models for them
and finally connect them to form the complete instrument.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

30

It should also be possible to substitute the model of a
part without having to change the model of the whole
instrument, in the same way that a clarinet player can
substitute the embouchure of his clarinet with having to
buy a new clarinet. Such options are valid from the
manufacturer’s point of view as well. A guitar maker
could add an additional string, without putting up the
entire guitar from the beginning.

 In Fig. 1, examples of instrument parts and their
acoustic behavior are given. By combining parts from
each class, a well-known or even an original musical
instrument occurs. Originality refers not only to the form
of the instrument, as in the case of the saxophone
introduction, but also to new ways of performing classical
instruments. Performance is considered to be a part of the
instrument itself, since it is strongly related with the
excitation mechanism and the use of other parts. In fact,
we should consider an instrument functional part as an
acoustic procedure, not just as a material piece of the
instrument.

Fig. 1. Functional parts of musical instruments

III.

A.

THE KTISIVIOS FRAMEWORK

VMIs
We define Virtual Musical Instruments (VMIs) as

software applications that provide users with the means
necessary to control, fine-tune, experiment and perform
music with an as intuitive and natural way as possible.
The basic parts of a VMI are a sound synthesis engine or
synthesizer and a graphical user interface or a hardware
control device.

The music software industry has responded to user
needs by providing a number of computer applications
that can be used to develop, amongst other, VMI
applications. The most popular of these applications use
the famous visual patching paradigm to allow users to
create synthesizers [14], [15], [5]. Creating a musical
instrument in such environments involves fitting patches
together in a graphical manner, mimicking hardware
assemblage. Another popular approach involves using
high-level musical languages that allow sound synthesis
and control through programming [16]. Both of these
approaches have proven very successful by assigning
development responsibilities on the users.

There are however groups of users that are outside the
scope of such applications; users that lack or should not
have to possess expertise with programming, knowledge
of sound physics or familiarity with digital signal
processing; users that are profoundly involved in the
music domain and should not be directly involved in the
development process. We classify musical instruments
craftsmen, performers, educators, musicologists and music
composers as example groups of genuine “music” users.

These groups of users have to use a software music
environment whenever they want to operate a VMI,
without having direct access to the VMI as an independent
application. Loading scripts, projects or configuration
files, and in general, interacting with a VMI inside a
software tool or environment forces the user to gain
familiarity with the environment.

This demand for familiarity and, ultimately, usage
competence, is often troublesome and acts as an obstacle
and a deficiency factor for using a VMI in a natural and
intuitive way. Even more, frustrating situations occur,
provided that a user can handle a VMI as a developer,
giving her full rights to manipulate source code and design
of the VMI and the ability to potentially “break” it. The
non-developer, “music” user should be protected from
such situations and interface with the VMI directly as a
rigid, compact entity.

As far as software development in the music software
industry is concerned, the dominant issues of reusability,
maintenance and ultimately cost-effectiveness, are
present. Component based development [17], as an
approach that successfully deals with such issues, is
partially used in the music software domain. There are
some add-on modular approaches, but still, these
“expansion” modules are far from autonomous and
depend heavily on being hosted by some application. It is
definitely not possible to collect, compose and finally
produce a complete application using such modules. Thus,
the overbearing pattern of proprietary monolithic
applications still applies in the music software domain,
leading to an increased cost of products, as a result of poor
reusability, backbreaking maintenance and evolution of
software.

The choice of physical modeling as a sound synthesis
technique is imperative, once someone decides to provide
highly efficient, realistic sound synthesis. Although some
software applications endorse physical modeling as a
sound synthesis technique, none is devoted to it.

We decide to take a different approach that will provide
a clear distinction between users and developers. We
present KTISIVIOS, a component-based framework that
can be used for developing custom-made VMIs based on

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

31

physical modeling. We propose a development life cycle
for KTISIVIOS that handles the distinction between users
and developers in an effective, concise way. We move
physical modeling a step beyond, by decomposing the
holistic model of a single instrument into small,
independent models of the parts of the instrument that
interconnect and are replaceable, just as in the case of a
real world musical instrument.

B. Framework Description
In this section we present KTISIVIOS, a component

based framework for the design and development of
VMIs. KTISIVIOS provides guidelines and tools for fast
and costless implementation of flexible and optimized
VMIs. Digital sound synthesis using physical modeling
and musical instrument parts representation through
software components constitute the main philosophy
behind the framework. KTISIVIOS has an intrinsic object
oriented philosophy and is implemented in C# using the
Microsoft .Net framework.

KTISIVIOS framework is developed according to
specific requirements. The most important are: to be open
regarding the number, type and control means of
implemented VMIs, to allow the end-user to modify in
real time the values of physical properties of the
instrument represented by the VMI (e.g. shape and
dimensions), with corresponding sound result, and to give
the application the prospect to run distributed, that is to
run on more than one computers, which communicate
through network.

We find KTISIVIOS to be a useful tool for a large user
group, from common users who desire to exploit the
musical potentials of computers to expert users with
specific needs. Such expert users are researchers
attempting to reconstruct antique or traditional musical
instruments, contemporary performers, composers trying
to produce original timbres, craftsmen and musical
instrument manufacturers willing to hear the sound that a
musical instrument produces before building it and
students using it as a music education tool.

The main feature of our framework is the modular
design through component based architecture. Following
the standardizations and specifications of KTISIVIOS,
developers implement software components that simulate
the acoustic behavior of independent musical instrument
parts. It is also possible for a component to apply
common liturgical functions for the VMI itself, such as
load, save, help and exit functions.

KTISIVIOS implements interfaces for each
component’s structural parts. In object oriented
programming, an Interface is a reference type and it
contains only abstract members. Interface's members can
be Events, Methods, Properties etc. But the interface
contains only declarations for its members. Any
implementation must be placed in the class that realizes
them. Thus, component development becomes easier and
more specific. The overall structure of every component
is strictly specified and the developer (see III.C) must
only inherit his classes from these interfaces and realize
the abstract members according to his requirements.

KTISIVIOS states that every VMI component is
structured from the following parts:

Graphical interface

Controller
Physical model.

In Fig. 2 we present the arrangement of these parts in a
VMI component.

Fig. 2. VMI Component and the arrangement of the internal parts

Physical Model (Model) implements the real time
algorithms that solve the mathematical equations, which
describe the acoustical behavior of the corresponding part
of the instrument. This element of the component is
responsible for the digital sound synthesis process.

It is also common, but not mandatory, for each
component to provide a Graphical Interface (GI) to
interact with the physical model, for configuration and
control purposes in particular. We consider this option as
default, as there are seldom cases where a component will
not have even a minimal graphical interface. In our case,
the main objective of the graphical interface is to publish
the adjustable physical parameters that control the model
to the user, who can interfere in the sound synthesis
process by modifying these parameters.

The controller is an essential part for every
component. Its task is to interconnect the graphical
interface with the physical model. It also supervises the
communication process among the component it belongs
to with other components.

Inter-component communication in KTISIVIOS is
specified through a messaging protocol. The
communication layer of the framework is used to transfer
messages between components. Every message signals
events. These events are transmitted between components
through a broadcasting system based on the Publisher-
Subscriber prototype.

KTISIVIOS defines the form, syntax and semantics of
these messages. To be more precise, every message must
contain a human readable description of the event that
signals (e.g. Blow_pressure, Temperature, Pluck). It must
also contain timestamps and synchronization details, as
well as the numerical values defining the magnitude of
the event.

Furthermore, extensibility of messages is of great
importance and is supported by KTISIVIOS to allow
transmission of messages containing extended
information. This protocol draws inspiration from
established protocols such as SKINI [18] and OSC [19].

 Remotability is another core feature of KTISIVIOS.
It enables VMI synthesis with components stored in
independent computational systems, connected through a
network. VMI applications based on physical modeling

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

32

could be demanding in terms of computational resources,
due to the simultaneous solution of complicated equation
systems. Thus, the distributed operation of the application
is extremely important. We have incorporated this
functionality in KTISIVIOS using the .Net remoting
mechanism.

C. Product Life Cycle
The effect use of our framework is based on a particular

product development lifecycle that we propose. The
fundamental roles and entities in this lifecycle, also shown
in Fig. 3, are:

Component Developers: They receive requests for
developing VMI components that provide specific
functionality and submit them to the Active
Repository. Development inside our proposed life
cycle is bound by the specifications and
guidelines defined by the framework KTISIVIOS
and provided by the Active Repository.
Integrators: They receive requests from end users
for specific VMI products. Having clarified user
requirements, integrators turn to the Repository to
look for components that provide the requested
functionality. After collecting the necessary
components, they use tools provided by the
framework to put together the separate
components into a complete application.
End Users: They are simple or expert users that
request a VMI product from Integrators.
Active Repository: It stores, validates and
catalogues implemented components, while
providing specifications and guidelines for
component development.

Fig. 3. Roles and product life cycle

Following the proposed lifecycle, components that
come from different software vendors and implement
different physical modeling approaches for the
corresponding instrument parts can incorporate in a
reliable way. Thus, a component bank can be created
corresponding to a real world instrument parts bank. End
users, in collaboration with integrators, select the
combination of components that will produce an
integrated VMI application that satisfy their needs. The
distributed functionality of KTISIVIOS enables the
creation of higher order applications using remote
components, offering possibilities such as creating Virtual
Music Orchestras.

D. Framework Tools
KTISIVIOS provides two separate tools for integration

and execution of a VMI instrument, namely Integration
Tool and Execution Tool.

The “Integration Tool” provides the integration
environment, where components are represented by icons.
Integrators connect to the Active Repository, browse
through the implemented components and load the
appropriate ones. Through the tool’s interface, they
interconnect the VMI components and arrange their
graphical interfaces, formulating step by step the final
VMI application. Component connections are directed
links, starting from the component that in general requires
a service and ending to the component that provides the
particular service.

The Graphical User Interface (GUI) of the VMI is also
designed through the Integration Tool. The interfaces of
each component are arranged by will, and a “snapshot” is
taken in order to store the current GUI instance. The
stored snapshot will be the GUI of the VMI.

The “Execution Tool” is the final product presented to
the end users. It loads the components arranged with the
integration tool, as well as the designed GUI, and simulates
the corresponding real world instrument.

Fig. 4. Framework tools and roles

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

33

IV.

A.

VIRTUAL ZOURNAS

In this section we demonstrate the implementation of
Virtual Zournas, using KTISIVIOS and the proposed life
cycle. In the following paragraphs, after giving some
information on the zournas, we describe the developed
components, their structure and functionality. Secondly
we demonstrate the integration of Zournas from these
components using the Integration Tool. Finally we
experiment with the final product, presenting several use
cases.

The Zournas
The zournas is a traditional Greek double-reed

woodwind instrument, and has a long history. It is also
found throughout Europe, North Africa, Middle East,
India and China with various names. It resemblances the
shawm, the most widespread woodwind double reed
instrument of the Middle Ages, which is considered to be
the ancestor of the modern oboe [20].

As most woodwind instruments, it consists of two
major parts, also shown in Fig. 5: the embouchure and the
bore. The embouchure’s main part is double reed, which
acts as a pressure controlled valve. Through a connector,
which is covered with fiber, the embouchure connects to
the instrument bore. The bore is conical, like the one of
the oboe. The number of tone-holes is usually 7 and there
are no keys or other mechanical parts. The bore ends up at
a bell, whose flare varies greatly among the instruments
found [20].

Fig. 5. Image of the zournas

B.

1)

Building Components
In order to implement Virtual Zournas, we begin with

designing the components that correspond to the
functional parts of the real-world zournas. It should be
made clear that there can be many approaches for defining
the parts that these components describe.

Instrument functional parts correspond to acoustic
procedures. Such procedures are by nature modular, in the
sense that a single procedure can be described by partial
ones. Likewise, an instrument part can be modular. For
example, when one defines the “bore”, she could consider
the “bell” either as part of the bore or as an individual part
that connects with it. The “excitation”, “oscillating body”
and “resonance body” are the most generic, since they are
found in all instruments. The excitation mechanism for
our case is blowing, the oscillating body is the double reed
and the resonance body is the air column inside the bore.

Moreover, there are different ways to describe an
acoustic procedure. There are many physical models for
the same part, even though each one can have different
rate of success. In the same way, there are many
approaches regarding a component. A “bore component”
can enclose a “bell component” or not, can model the
tone-hole behavior or not etc.

 We continue by analyzing the components for our
VMI. The first three apply to instrument parts, while the
later two apply to useful VMI functions.

The embouchure component
As its name states, this component corresponds to the

embouchure of the zournas. It’s most vital parts have to do
with the physical model of the embouchure and are the
mathematical equations describing double reed’s
oscillation along with the air’s flow characteristics. The
acoustical behaviour of double reeds is yet under study. In
our approach we use the physical model presented by
Almeida et al [21], adapted to measured physical
properties of zournas’ reeds [20], [22].

In order to represent these equations in a computational
system, a discrete time transformation is crucial. This step
follows the directives of digital synthesis framework for
wind instruments presented by Guillemain et al [23], [24],
[25]. We use the same framework for the discretization of
the equations describing the other instrument parts and for
the design of the overall digital synthesis algorithm.

In TABLE I we present the equations and the
corresponding physical variables describing the acoustical
process in the embouchure. The model calculates the
pressure at the end of the embouchure or the input of the
bore when provided with external blowing pressure value.

TABLE I.
EQUATIONS FOR ZOURNAS’S PHYSICAL MODEL

2
2

2 r m
d y t dy t A

y t p t p
Q dt mdt

y: displacement of two
reeds

: resonance frequency
Q: quality factor
pr: reed pressure
pm: blowing pressure
m: mass of the reeds

: reed surface

()rS t y t w w: reed width
Sr:reed opening

r r r rq t S t C t aS t C t

q: flow
: Vena Contracta

parameter
Cr: air stream speed

2
r m rC t p p t : air’s density

2

2
1
2b r

ra

q t
p t p t

S

: Bernoulli parameter
Sra:Embouchure’s exit
surface

Through the component’s graphical interface the user
can adjust the following parameters:

Initial reed opening
Reed width
Diameter of the embouchure’s output

2) The bore component
The bore component implements the physical model of

the zournas’s bore, including the tone-holes and the bell.
The model calculates the bore’s impedance, whose
expression depends on its geometrical properties and the
tone-hole lattice.

The model calculates the external pressure exp at the
exit of the bore, provided with the pressure at the input of
the bore (embouchure’s output) through the equation:

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

34

* *
ex b

d
p p

dt
q (1),

where *
bp and denote the dimensionless pressure and

flow variables in the bore. Thus, the embouchure’s
component output is the input for the bore component.
Using Guillemain’s framework these equations are
transformed in the discrete time domain.

*q

The component’s graphical interface publishes to the
user the following adjustable parameters:

Bore diameter
Bore length
Bell diameter
Bell flare

3)

4)

5)

C.

The excitation component
The excitation mechanism, blowing for our case, is

simulated through this component. The physical model
describes the blowing procedure and drives the digital
synthesis algorithm for the sound production. The
algorithm feeds this value to the embouchure component’s
input and initiates the sound synthesis procedure.

Even though this component’s functionality precedes
those of the embouchure and the bore we present it last,
because it is natural for the user to fine tune the
embouchure’s and the bore’s parameters, before exciting
the instrument via blowing it.

Since the entire sound synthesis algorithm is driven by
this component, we choose it to handle the communication
between the algorithm’s output and the computer’s sound
system as well. In other words, it is responsible for
streaming the physical model’s output (acoustic pressure)
to the system’s soundcard, in order to listen to the sound.

The graphical interface provides the user the option to
adjust the blowing pressure and to fire up the sound
synthesis procedure by pressing the specified button.

The view component
This component does not represent a functional part of

zournas, but implements typical functionalities of
computational applications like loading and saving
configuration files, help, information, and application exit.
Thus, a physical model is not implemented.

The most vital part of this component is its graphical
interface. Furthermore, it provides two different visual
representations of the zournas, a 2-Dimensional and a 3-
Dimensional representation.

The 3D-representation of zournas is developed in
VRML. The user can examine zournas through the 3D-
model and adjust its physical characteristics using the
computer’s input devices (e.g. mouse). The controller
transfers the new values to the other components. The
adjustable parameters are:

Bore length
Bore diameter
Bell flare
Point of view (visual parameter)
Bore material (visual parameter)

Using the 2D representation, the user can select several
possible fingerings, by opening and closing tone-holes,
using the computer’s mouse. The controller transfers the

appropriate fingering values to the bore component, where
the tone-hole model is implemented.

The execution component
This component implements functionalities for

controlling Virtual Zournas and performing with it. To be
more precise, it supplies Virtual Zournas with the function
to play a melody from a MIDI file or to be controlled by
an external MIDI device. MIDI messages are transformed
into appropriate values for the parameters of the physical
models.

Integrating Virtual Zournas
After implementing the aforementioned components,

we use the Integration Tool in order to connect the
components and design the GUI of the VMI, hence
integrating the complete application. Initially, the five
components are loaded to the Integration Tool.
Afterwards, the communication paths amongst them are
specified. This is accomplished using the tool’s graphical
interface, simply by drawing lines between the
components that interchange messages.

Due to the form of the digital sound synthesis
algorithm, the excitation component that drives the
synthesis procedure connects with the embouchure
component and the bore component. The view component
is responsible for adjusting the parameters of the
embouchure and the bore components. For that reason, it
is connected with these components so that the
appropriate messages are exchanged.

The execution component connects with the excitation,
the embouchure and the bore components, in order to
transmit the transformed MIDI messages. At this point,
the VMI is almost finished. We arrange the overall
graphical interface of the application, by selecting the
“arrange GUI” option and place each component’s
graphical interface in the position we wish to appear in the
final application.

Finally, we take a “snapshot” of the arrangement. The
snapshot stores not only the designed GUI, but the
interconnections among the components as well. In other
words, the snapshot stores every action that has taken
place in the Integration Tool, for the time being. Now,
when the Execution Tool is run, the snapshot is loaded
and we have Virtual Zournas on our hands, ready for use.

Fig. 6. Components connected using the Integration Tool

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

35

D. Using Virtual Zournas
The end user runs the Execution Tool in order to use

Virtual Zournas. In the window appearing, one can see the
instrument parameter value set, the excitation section, a
2D image of the zournas, function buttons and menus. Let
us now examine some use case scenarios that Virtual
Zournas offers.

Fig. 7. GUI for the Virtual Zournas

1)

2)

Listening to isolated notes
By running the execution tool for the first time, Virtual

Zournas loads a default value set for the adjustable
embouchure, bore and excitation parameters, described in
paragraph IV.B. The user can set the values for these
parameters using the computer’s input devices. These
values must belong into a specific for every parameter
value range, since the models cannot produce sound for
any given values. The appropriate range, along with a full
instruction set, is provided to the user with the help
function. If a given value is off range, a warning message
appears.

After adjusting the values of the parameters, the user
can hear the sound result from the Virtual Zournas he just
defined. First, he sets a value for the blowing pressure, in
the excitation section. Then, by clicking the “Blow”
button, sound is produced for 3 seconds, and can be heard
provided a usual computer sound system (soundcard,
speaker) is present. The sound corresponds to that
produced from a real-world zournas with properties
defined by the parameters’ values and all tone-holes
closed. Of course, it is possible that the values describe a
zournas entirely unknown to the real world.

If the user finds the sound result appealing, he can save
the parameter value set, in order to load it in later time,
without having to re-set the values from scratch. Values
are saved locally as an XML formatted file. We define
these files as configuration files. Blowing pressure value
is not saved, since it is considered to be a per

Using the 3D replica
By selecting the “3D visualization” menu, the 3D

replica of zournas is activated. It is a highly detailed 3D
VRML visual model of a real-world zournas. The user
manipulates the model, turns it around, flips it over,
changes the point of view etc, using the computer’s mouse
and the slide-bar “Move”.

Moreover, she modifies the model’s features, described
in IV.B.4), using slide-bars, and observes the visual model
change accordingly. The values of parameters are shown
in the lower part of the window. Apart from affecting the
visual model, the values are also sent to the sound model’s
components. In this way, the user “blows” again and
listens to the sound produced from the zournas set up with
the 3D interface.

Fig. 8. 3D Visualization of the zournas

3) Choosing fingering
The 2D image of the zournas is located on the upper

right part of the main GUI. The user selects a desirable
finger by double-clicking over the tone-holes. Open holes
appear black, while closed holes appear light brown.

The fingering is confirmed by clicking on “Confirm
Fingering” button, and the Virtual Zournas is ready to be
blown. The sound result matches that of zournas with the
current parameter value set and the confirmed fingering. It
is worth mentioning that a fingering cannot be saved and
loaded in the way a parameter value set can.

Fig. 9. 2D replica of zournas for choosing fingering

4) Playing a tune with the Virtual Zournas
After experimenting with sounds and fingerings, the

user chooses to listen to a whole melody and not just
isolated notes played. There are to ways to make Virtual
Zournas carry a tune: by loading a MIDI file and by
connecting external MIDI devices.

By clicking on “Load MIDI File”, the user browses and
loads a MIDI file. Frequency and MIDI messages are used
by the sound production models, and the melody is played
with the sound of zournas. The MIDI file must contain a
monophonic melody, since the Virtual Zournas cannot
produce more than one note simultaneously.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

36

Perhaps the most interesting case is when the user
connects an external MIDI device to control the Virtual
Zournas and perform with it, in real-time. By selecting
“Connect External Device”, a list of the computer’s MIDI
devices connected to the user’s computer shows up and, if
the external device is properly installed, it appears on it.
By marking it and clicking “Start”, the user is ready to
perform. Again, frequency and time MIDI messages are
used for the sound production sequence. At the end of the
performance, the connection is stopped by pressing the
“Stop” button.

V. CONCLUSIONS AND FUTURE WORK

Virtual Musical Instruments play a significant role in
modern music technology applications. In this paper we
presented KTISIVIOS, a component-based framework
for developing VMIs based on physical modeling. By
following the proposed development life cycle, reduced-
cost VMI applications can be provided to a broad range
of ‘music’ users. Ease of customization per user, shorter
development times, trivial maintenance and effortless
upgradeability of VMI applications are some of the
expected benefits of our approach.

Virtual Zournas is the first VMI implemented under the
proposed framework. Further research will include
improvement of the physical model of zournas, and an
improved GUI for Virtual Zournas. Hopefully, many
components for various instrument parts will be
developed, and the example of Virtual Zournas will be the
start point for a series of VMIs designed using
KTISIVIOS.

ACKNOWLEDGEMENT

This research was funded by European Community Funds
and Hellenic National resources under the HERON
project of the Research Programme PYTHAGORAS I/
EPEAEK.

REFERENCES

[1] J. Doble, Elemental Design Unique Mallet Percussion,
http://www.tidewater.net/~xylojim/

[2] G. Pavlidis., D. Tsiafakis, F. Arnaoutoglou, C. Chamzas, G.
Provopoulos, S. Chatzopoulos, “MOMI: A dynamic and internet-
based 3D virtual museum of musical instruments”, 3-rd
International Conference on Museology, Mytilene, 5-8 June 2006.

[3] S. Goto, T. Suzuki, “The Case Study of Application of Advanced
Gesture Interface and Mapping Interface, - Virtual Musical
Instrument “ Le SuperPolm” and GestureController “BodySuit””,
Proc. of the 2004 Conference on new Interfaces for Musical
Expression (NIME04), Hamamatsu, Japan, June 3 – 5, 2004.

[4] N. Castagné, C. Cadoz, “The GENESIS environment : physical
modeling as a language to be practiced by musicians”,
International Conference Acoustics (ICA), 2004/04/04, Kyoto,
Japan (2004) pp.4 pages

[5] Tassman 4, Available:
http://www.applied-acoustics.com/tassman.Htm

[6] V. Välimäki, T. Takala, “Virtual musical instruments - natural
sound using physical models”, Organised Sound, Volume 1 , Issue
2 1996, pp. 75 – 86, ISSN:1355-7718.

[7] J. O. Smith III, “A history of ideas leading to virtual acoustic
musical instruments”, IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, 2005, 16-19 Oct. 2005, pp.
299 - 306

[8] E. Miranda, M. Wanderley, New Digital Musical Instruments:
Control and Interaction beyond the Keyboard, A-R Editions,
Spring 2006. ISBN 0-89579-585-X

[9] A. Mulder, “Virtual musical instruments: Accessing the sound
synthesis universe as a performer”, Proc. of the First Brazilian
Symposium on Computer Music, 1994

[10] J. Rovan, M. Wanderley, “ Gestural Controllers : Strategies for
Expressive Application”, SEAMUS'98, Hanover - NH, 1998

[11] Virtual Instrument Museum:
http://learningobjects.wesleyan.edu/vim/

[12] C. Roads, The computer music tutorial, Cambridge,
Massachusetts, MIT Press, 1996, p. 265.

[13] R. Rabenstein and L. Trautman, “Digital sound synthesis by
physical modelling”, Proc. of Symposium on Image and Signal
Processing and Analysis (ISPA’01), Paula, Croatia, June 2001.

[14] Reaktor 5, Available:
http://www.native-instruments.com/index.php?id=reaktor5_us

[15] Max/MSP,Available:
http://www.cycling74.com/products/maxmsp.html

[16] SuperCollider, Available: http://www.audiosynth.com/
[17] D. D'Souza, A. C. Wills, Objects, Components and Frameworks

with UML, Addison Wesley, Reading, Massachusetts, 1998, p 31.
[18] SKINI: http://ccrma.stanford.edu/software/stk/skini.html
[19] OSC:http://www.cnmat.berkeley.edu/OpenSoundControl/OSC-

spec.html
[20] P. Tzevelekos and G. Kouroupetroglou, “Acoustical analysis of

woodwind musical instruments for virtual instrument
implementation by physical modeling”, Proc. of the Conf.
ACOUSTICS 2004, 27-28 Sept. 2004, pp. 49-60.

[21] A. Almeida, C. Vergez, R. Caussé, X. Rodet “Experimental
research on double reed physical properties and its application to
sound synthesis”, Proc. of Stockholm Musical Acoustics
Conference, Stockholm 2003.

[22] P. Tzevelekos, T. Perperis, G. Kouroupetroglou, “KTISIVIOS:
Virtual Musical Instrument environment, software,
documentation”, Technical Report, Research Programme
POLYMNIA: Integrted System for Music Tools and Music Portal,
Athens 2006.

[23] Ph. Guillemain, J. Kergomard, Th. Voinier, “Real-Time
synthesis models of wind instruments based on physical models”,
Proc. of Stockholm Music Acoustic Conference (SMAC), pp. 389-
393, 2003.

[24] Ph. Guillemain, A digital synthesis model of double-reed wind
instruments, EURASIP Journal on Applied Signal
Processing, 2004:7,pp. 990-1000, 2004.

[25] Ph. Guillemain, J. Kergomard, Th. Voinier, “Real-time synthesis
of clarinet-like instruments using digital impedance models”,
Journal of the Acoustical Society of America, pp. 483-494, 2005.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

37

